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Abstract A distinct feature of wave boundary-
integral equations are the " irregular

Two topics on the numerical solution of frequencies. They coincide with the eigen-
boundary-integral equations arising in linear frequencies of the interior Dirichlet or
wave-body interactions are discussed. The Neumann problems, and are known to introduce
properties of a spectral technique for the large errors in the predicted hydrodynamic
solution of the integral equation are analyzed forces, often over a substantial band of
and compared to the conventional collocation frequencies. A comprehensive analysis of the
method. It is shown that, using this tech- mathematical properties of boundary- integral
nique, hydrodynamic forces predicted by the equations, (with emphasis in acoustics), along
source-distribution method are identical to with a survey of techniques used for the
those obtained from the direct solution for removal of the irregular frequencies, is given
the velocity potential. The second part of the in the recent book of Colton and Kreass (1983).
paper investigates the numerical properties of The numerical aspects of boundary-integral, as
a method which removes the effects of the well as finite-element, hybrid-integral and
irregular frequencies for bodies of general finite-element/boundary-integral methods in
shape at a small computational and algorithmic free-surface flows are reviewed by Mei (1978),
overhead. Its performance is illustrated in Yeung (1982) and Euvrard (1983).
the evaluation of the heave and sway hydro-
dynamic coefficientfi.of a circle and a rectan- The first part of the paper analyzes the
gle. - ., . . / . properties of a technique for solving bound-

"ary-integral equations. It is often quoted in
I. Introduction ,/-the literature as the Galerkin method. In most

implementations of the boundary-integral for-
The solution of boundary-integral equa- mulation, the body surface is approximated by

tions for the evaluation of the linear wave a collection of N plane quadrilaterals or tri-
loads on marine structures is a comon task in angles. The conventional collocation method
today's practice. Its success is due to its enforces the validity of the equation at a
algorithmic simplicity, the ease of describing single point on each panel, usually the cen-
the surface of a three-dimensional body by a troid. The method proposed here, averages the
collection of facets and the moderate size of equation over each panel and avoids the need
the linear systems to be solved. These are to select a collocation point. It belongs in
illustrated by its widespread use by aero- the general category of "spectral" tech-
dynamicists I Hess and Smith (1966) . niques which express the solution in terms of

N basis functions, and then pre-integrate the
In the presence of a free surface, the product of the equation to be solved with each

C-) efficiency of the method reli-s on the fast function of this set. Here, the i-th basis
evaluation of the wave-source potential which function has the value one on the i-th panel

LJJ is a C.ubstantislly more complex function to and zero on the rest of them.
-.1 compute than its counterparts in an infinite

fluid and an acoustic medium. Existing methods The Galerkin technique has a set of inter-
for the computation of its values and deriva- eating symmetry properties. The diagonal ele-
tives are hard to evaluate, since it is the ements in the added-mass and damping matrices

p erformance of the integrated radiation-dif- obtained from the source-distribution and the
-,ration computer programs that is usually Green method are identical. The off-diagonal

"1 eported. For the three-dimensional comput- coefficients A.., B.. obtained from one
atiur. reported in the present paper, a set of method are idenica to the A.., B.. coef-
very efficient algorithms developed by Newman ficients which follow from he :Iher. More-
(19 'a) for water of finite and infinite depth over, the exciting forces obtained from the
and coded in the subroutine FINGREEN have been solution of the Green integral equation for
utilized, the diffraction velocity potential, are

identical to those obtained from the Haskind
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relations with the radiation velocity poten- degrees out of phase from the velocity poten-

tial supplied by the source-distribution tial, or in phase with the pressure. Thus
method, and vice versa. Analogous results do energy may flow out of the interior domain
not hold in the collocation method. preventing the persistence of eigensolutions.

The direction of the energy flux is controlled
Computations of the hydrodynamic coef- by the sign of the constant used in the linear

ficients for a semi-submerged spheroid and a combination of the two equations.
truncated vertical circular cylinder have been
carried out by Breit, Newman and Sclavounos Euvrard, Jami, Lenoir and Martin (1981)
(1985). No substantial difference from the were the first to adapt this methodology to
predictions of the collocation method has been wave-body interaction problems. Their
observed. Near the irregular frequencies, the formulation combines a layer of finite
Galerkin method led to a reduction of the elements in the fluid domain which encloses
error and the frequency bandwidth over which the body boundary, with a boundary-integral
it occurs. In principle, it requires an representation in the exterior domain analo-
additional numerical integration for the gous to that outlined in the preceding para-
evaluation of the infuence of panel i on panel graph. Computations of the hydrodynamic coef-
j. In Section 2, an algorithm is proposed ficients of three-dimensional bodies were
which reduces substantially this overhead, found free of the effects of irregular
while maintaining the main features of the frequencies.
Galerkin technique.

In the present paper the method of
For the Green integral equation, the ir- Burton and Miller (1971) is applied to the

regular frequencies coincide with the eigen- solution of the radiation problem. It corre-
frequencies of the interior Dirichlet problem. sponds to the limit of a finite-element layer
Both in two and three dimensions, they can be of zero thickness in the scheme of Euvrard et
suppressed by adding an artificial lid on the al. A circle and a rectangle have been anal-
interior free surface as suggested by Ohmatsu yzed. Their boundary has been approximated by
(1975) in connection with the source-distri- straight segments and the equation has been
bution method, and by Kleinman (1982) for the satisfied at their mid-point, according to the
Green integral equation. This approach is collocation method. In both the heave and sway
effective, but may lead to a substantial added mass and damping coefficients, errors
increase in the computational effort, espe- have been suppressed at and in the vicinity of
cially in three dimensions. Ogilvie and Shin the irregular frequencies.
(1977) suggested an alternative route by
adding a wave source at the origin of the The associated computational and algo-
coordinate system, assumed to lie on the rithmic overhead is small, since the effort
interior free surface, acting as an absorber involved in the computation of the second
of the energy associated with the interior derivatives of the wave source potential (they
Dirichlet eigensolutions. This approach was appear in the kernel of the equation of the
implemented in two-dimensions and was shown to first kind) is not large relative to that
successfully remove the first irregular required by its value and first derivatives.
frequency, at a small additional computational In deep water this overhead is negligible
effort. Ursell (1982) later established that because of the existence of recurrence
any number of irregular frequencies can be relations which relate derivatives of high to
removed if a sufficient number of singular- those of lower order. Moreover, the size of
ities are added at the origin. No implements- the linear system is unaffected by the
tion of this method in three dimensions is superposition of two equations over the same
known to the authors. number of panels.

Related work in acoustics predates the The method is currently being extended to
studies of marine hydrodynamicists by about a three-dimensional problems where the irregu-
decade. Refe rences to early studies can be lar-frequency effects are generally less
found in Colton and Kresa (1983). Burton and pronounced, and is expected to be effective
Miller (1971) proposed a methodology which for bodies of general shape. This is believed
exploits the different location of the irregu- to be the case because the addition of the
lar frequencies of integral equations of the integral equation of the first kind to the
first and second kind. The linear combination Green equation essentially corresponds to an
of two such equations for the exterior Neumann additional singularity distribution on the
problem has a unique solution on the entire actual body surface rather than at a selected
real frequency axis, and thus is free of ir- set of points internal to its boundary.
regular f-'equencies. The condition for this to
occur is that one of the two equations must be
multiplied by the imaginary unit times a
positive constant. It turns out that the asso-
ciated interior homogeneous problem is of
mixed Dirichlet and Neumann type, the two
being 90 degrees out of phase. Non-trivial
eigen solutions cannot exist since on the
interior boundary the normal velocity is 90
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angles, assuming that the unknown functions
have constant values on each panel. The
equations are enforced at a set of collocation
points usually taken to be the centroids. The

2. The Galerkin method Galerkin technique, proposed here, averages
instead the equations over each panel. In

We are interested to evaluate the hydro- discrete form, equations (2.1)-(2.2) become,
dynamic pressure on the surface of a body
interacting with regular free-surface waves. 1 N
Linearity, and the assumption of irrotational or - - z j f dx f dt G(x;&)
flow, allows the reduction of the problem to A J:1 S S
the evaluation of a velocity potential 0 (x)
which satisfies the Laplace equation in the N
fluid domain, the linear free-surface con- . z N (2.4)
dition, a prescribed normal gradient v(z) on Ai J.1 iiJ
the body surface, the vanishing of its gradi-
ent at large depth& and a radiation condition
at infinity. G f dx 5 de G(&;x) (2.5)Gij

i S£ Sj
Two boundary-integral formulations are

common, and both can be derived from Green's
theorem. According to the source-distribution N (S VA
method, t(z) is represented by a distribution a A +  z D ij  j j ± (.
of wave sources on the body surface, 2 J.1 (2.6)

OW(x) = / c(r)G(x;)d (2.1) (S fG(x&)
.S Dj S dn (2.7)

where G(x; ) is the wave-source potential at
the point x due a unit source located at the and equation (2.3),
point . Enforcing the normal velocity on
the body boundary leads to an integral equa- I N (G) N
tion for the strength (x) of the source - 6 ,A, + i D = E D .V.
distribution, J-i j.1 ij Vj

(2.8)
1 7m+ 10 G(x; ) d& _ VW-i :(x) + • .' d = =

€ V(x)i= ,.,

S x x

(2.2) D (G) dx f d& G(;X) (2.9)

The application of a different variant of ' S. S a

Green's theorem leads to an integral equation
with the velocity potential itself as the where A. is the area of the i-th panel. The
unknown, integraion with respect to the x-variable

introduced by( he Werkin averaging, allows

I 1(X) + ;G( ;x) dE = the matrices D , D and G to preserve
-- G(;x)d the symmetry properties of the correspondingS S I operators in the continuous case. In partic-

(2.3) ular, the matrix G is symmetric, thus

Equations (2.2) and (2.3) are adjoint Fredholm
integral equations of the second kind, since Gij " Gji (2.10)
the kernel of (2.2) is obtained from the
transposition of the arguments of the kernel (S)
of (2.3). The preference of the one versus the and the matrices D and D are the
other depends on the application for which transpose of each other, or
they are being considered. If, for example,
the flov velocities are required then equa- (G) (S)
tions (2.1)-(2.2) appear to be at an advantage D ij Dji
since the evaluation of the second derivatives
of G is not necessary. If, on the other hand,
only quantities dependent on the velocity po-
tential are needed, then (2.3) must be prefer- The proof of (2.10) follows from the symetry
red due to the reduced storage requirements. of the wave-source potential with respect to

its arguments, and of (2.11) by exchanging the
Their numerical solution is usually ob- role of the dumy variables under the integral

tained by approximating the body boundary by a signs in (2.7) and transposing the i and j
collection of plane quadrilaterals or tri- indices. Analogous results do not hold in the



collocation method, where the corresponding Both a( s ) and B( G ) are complex scalars.
matrix elements are obtained by replacing the Three properties follow from equations (2.16)
integration with respect to the x-variable in and (2.17)
(2.)-(2.9) by the selection of a collocation
point.• 1) For the diagonal hydrodynamic coefficients

Let A adiag( A.), and define, , k~ Akk- 3 k ~ k -1,... ,6,p the
vectrs u. ann v. are equal to the
values on the j-ch panel of the unit vector1 (G) &n

D -- A + D (2.12) which points out of the fluid domain.
In this case the hydrodynamic coefficients
predicted by the two methods are identical,

The solution for the velocity potential since
obtained from equations (2.4)-(2.7) in terms
of the matrices A, D and G, is given by

T-1 v W - v w v (2.18)
() -AG(D) v (2.13)

and the solution of (2.8) by 2) For the off-diagonal coefficients, it
follows from (2.16) and (2.17) that

(G) DG v (2.14) -(S) .(G)
V (S) t (2.19)

For an arbitrary normal-velocity vector v, a
necessary condition for the identity of the 3) For the diffraction exciting force, we
two solutions (2.13)-tind (2.14) is the eque- define
lily ofyth? matrix D G with the matrix
AG C(D ) A, or equivalently the 0
symetry of the matrix vj = -( )j (2.20)

W - A D G (2.15) where 'P is the incident-wave velocity
potential. If Xk is the diffraction
exciting force in the k-th direction, it

A proof that W is symmetric did not prove can be deduced from (2.16) and (2.17) that
possible. Numerical experiments for a model the force predicted by the source-distri-
problem in two dimensions in an infinite fluid bution/Green method by directly solving the
revealed that the matrix W is "almost syme- diffraction problem, is identical to the
tric", meaning that elements with symmetric force obtained from the use of the Haskind
locations relative to the principal diagonal relation with the velocity potential
agreed to 2-3 significant digits. This aug- supplied by the solution of the Green/
gests the proximity of the values for the source-distribution integral equation.
velocity potential obtained from each method.

Computations of the hydrodynamic coeffi-
The hydrodynamic forces can be obtained cients of a spheroid and a vertical circular

from the solutions (2.13) and (2.14) by multi- cylinder using both methods have been carried
plying the velocity potential by the panel out by Breit, Newman and Sclavounos (1985). A
area A. and the vector u. which radiation-diffraction computer program has
represents the "direction" of the force we are been written for he hydrodynamic analysis of
interested to evaluate. This operation is bodies of general shape. Their wetted surface
equivalent to a pre-multiplication of the is approximated by a collection of plane
velocity-potential vector by the vector quadrilaterals and triangles, as illustrated
(A) . The resulting hydrodynamic force in Figures 1 and 2 for a quarter of the spher-
obtained form the source-distribution method roid and the vertical cylinder respectively.
is given by

For inter-panel distances small compared
to their characteristic dimensions, the

. Rankine singularity (including when appropri-
, u W v (2.16) ate its image with respect to the free surface

and the sea bottom) is subtracted from the
wave-source potential and integrated analytic-

and from the direct solution of the Green ally over the panels. For large distances
integral equation, between the panels the total wave-source

potential is integrated by quadrature. The

(G) algorithms for the integration of the Rankine
U W V (2.17) singularities on plane quadrilaterals and for

the evaluation of the wave-source potential
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have been developed by Newman (1985a & b) and
coded in the subroutines FINGREEN and RPAN
respectively. The four-node Causs-Legendre
quadrature, adapted to a plane quadrilateral
of general shape, has been used for the
evaluation of influence coefficients in both
the collocation and Galerkin methods. Sugges-
tions on the order of the quadrature to ,be
used in a production radiation-diffraction
computer program are discussed at the end of
the section.

The bydrodyamic-force predictions of the
collocation and Galerkin methods did not
differ substantially away from the irregular
frequencies. Tabulated results of high
accuracy are reported in Breit, Newman and
Sclavounos. Figures 3 and 4 illustrate the
behaviour of the two methods at the first
heave irregular frequency of the spheroid and
the cylinder respectively. The solid lines
represent the predictions of an independent Figure 1 Discretization of a quarter of the

curvilinear-panel program for the spheroid, surface of a prolate sphepoid (B/L =

and a Fourier-transformed time-domain solution 1/8) by 64 panels.

for the cylinder. The Galerkin predictions
appear to be less sensitive to the irregular-
frequency errors, especially for the spheroid
coefficients.

The Galerkin technique requires an addi-
tional integration for the evaluation of each
element in the D.. and C.. matrices , [eq.

(2.4), (2.9)] XrelativV to the collocation
method. It is reasonable to assume that the
accuracy in the integration over the i-tb
panel needs to be no higher than that over the
j-th panel. Concerning the Rankine source and
dipole, analytical expressions for the double
integral over a pair of plane quadrilaterals
are not known to the authors. When the analyt-
ical expressions are utilized for the evalu-
ation of the Rankine source and dipole inte-
grals over the j-th panel, a four-node Gauss-
Legendre quadrature is suggested for the inte-
gration over the i-th panel. Since this result
is frequency-independent it may be evaluated
once and stored.

The integrals of the remaining slowly-
varying but frequency-dependent parts, can be

evaluated using a quadrature scheme of the
same order for the j-th and i-th panels. In
the collocation method, the use of a four-node
Gauss quadrature causes an increase by a
factor of four in the number of evaluations of
the wave-source potential, versus the single-
node centroid integration. This factor may be
as high as sixteen in the Galerkin method. Figure 2 Discretization of a quarter of the
Optimality requires that errors due to qua- wetted surface of a truncated
drsture and the approximation of the geometry vertical cylinder (R/T -2) by 128

by plane panels must be of comparable nag- panel

nitude. This may be achieved by increasing the panels.

number of panels and utilizing a single-node
quadrature. This decision depends on the
efficiency in the evaluation of the wave-
source potential, the solution of the linear
system and the computing environment. If the
single-node-quadrature route is selected, the
collocation and Galerkin methods are compara-
bly expensive over a large number of fro-

* quencies.
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a 3, Irresular freguencies

a a The Green integral equation (2.3) is known

to possess non-vanishing homogeneous solutions
9 ! at a discrete set of frequencies which corre-

U g-spond to the eigenfrequemcies of the interior
Dirichlet problem. Their detrimental effect ina C.11.eoaios the numerical predictions of the added-mass

4 i elerhim and damping coefficients of surface-piercing

bodies has been illustrated in Figures 3 and
- _4.

a Although a discrete set in the continuous

& case, their presence in the discrete problem
£ A is manifested by substantial errors, often

over a quite wide frequency band around their
exact location. This is due to the bad "con-
ditioning" of the integral equation (2.3) not

* only at, but also in the vicinity of the ir-aaaa regular frequencies. Bad conditioning is

a known to cause large errors in the solution
when a small perturbation is imposed on the

6; equation. In wave-body interactions sources of
Figure 3 leave added-mass and damping such perturbations are:
coefficients of a prolate spheroid (B/L - 1/8)
near the first irregular frequency, made non- 1) The approximation of the body boundary.
dimensional by the displaced volume the water
density and the frequency of oscillation. The 2) The approximation of the velocity poten-

solid line is obtained from an independent tial.
curvilinear-panel program and the tick marks
are predictions form the plane-panel program. 3) Errors in the evaluation of the wave-

[From Breit, Newman and Sclavounos (1985)] source potential.

4) Quadrature errors in the evaluation of

the influence coefficients.

a! a i5) The approximate way in which the equation
is being satisfied.

6) Roundoff errors in the solution of the
linear system.

• 1-32

a Collocation
a Galerkin A measure of the ratio of the output

versus the input errors in the solution of
- "integral equations is often supplied by the
- "condition number". Explicit definitions of it

are known for matrix equations. Thus the
discrete form of an integral equation may be

a used to obtain an estimate of it.

40 Numerical experiments indicate that the
*errors and frequency bandwidth of the irregu-

lar frequencies decrease with increasing
. U • mnumbers of panels. The associated computation-

al cost, however, prevents this to be consid-

11./2 ered a viable treatment in practice. A short
survey of successful methods for the removal

_._ of the irregular-frequency effects has been

Figure 4 : leave added-mass and damping given in the Introduction.

coefficients of a truncated vertical cylinder
near the first irregular frequency, made non- The method of Burton and Miller (1971),

dimensional by the displaced volume the water developed for the solution of an acoustic

density and the frequency of oscillation. The scattering integral equation, is here adapted

solid line is obtained from the Fourier trans- to the wave-body interaction problem. The
form of an independent time-domain program and Green equation (2.3) is valid for a point x on
the tick marks are predictions form the plane- the body boundary. If x lies in the fluid

panel program. (From Breit, Newman and
Sclsvounos (1985)1
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domain, the factor 1/2 which multiplies the The numerical conditioning of equation
first term needs to be replaced by unity. (3.1) is worse than that of the Green equation
Taking the derivative of both sides in the (2.3). This is generally known to be true for
direction of the unit vector i which points integral equations of the first kind. Hence,
out of the fluid domain, and letting the point the perturbations 1-6 cause errors in the
x approach the body boundary, ye obtain solution *of (3.1) large relative to those in

the solution of (2.3).

_ -+ )G(r ;x) dC - The effect of equation (3.1) on the solu-
x x S tion of (3.2) is controlled by the magnitude

of the positive quantity a . If a -0, (3.2)
reduces to the Green equation. For finite

- i . s -- d (3.1) values of a , (3.2) is expected to be free
x s X of irregular frequency effects. This turns out

not to be the case in practice for very small

For a prescribed normal velocity, (3.1) is an values of a which damp excessively the
integral equation of the first kind for the effect of equation (3.1). In this case the
velocity potential on the body boundary. Its error in the hydrodynamic hydrodynamic coef-
irregular frequencies correspond to the eigem- ficients near the irregular frequencies of
frequencies of the interior Neumann problem. (2.3), although reduced, is still substantial.
Burton and Miller (1971) show that the linear For large values of a , the effects of
combination (2.3) + i o(3.1), or equation (3.1) are dominant. The predicted

coefficients are now erroneous near its own
irregular frequencies. Smaller, but still

- -(X) + s(&)n (I + i* )G(&;x)dE noticeable, errors are also present for all
S x frequencies due to its poor conditioning. The

magnitude of both can be obviously controlled
by the selection of a sufficiently small value

J (+ j2 -- (x,.)dt of a which strikes a balance between the
" n X errors coming from the irregular frequencies

(3.2) of the Green equation (2.3) and those coming
from the ill-conditioning of equation (3.1).

has no real irregular frequencies for real and
positive values of the parameter . Numeri- Computations of the heave and sway coef-
cal experimentation suggests that for valt ficients of a circle and a rectangle (B/T-2),
of the parameter i ranging from 0.2 to 0.3, indicate that the value of a -0.2 produces
the performance of (3.2) is optimal. A satisfactory results over a wide range of fre-
discussion of the properties of equations quencies. A value of less than one is not
(2.3), (3.1) and (3.2) for acoustic-wave prob- surprising. If the error in the solution of
lens, is given by Colton and Kress (1983). (3.2) resulting from the presence of equations

(2.3) is to be comparable to the error due to
Approximating the body boundary by a equation (3.1), the value of t must be

collection of panels S., and sat i s f y in g coparsable to the ratio of their condition
(3.2) at collocation1 points located at the numbers which is a quantity with magnitude
panel centroids, we obtain the discrete set of less than one.
equat ions A computer program has been written for

"I .) ;) the hydrodynamic analysis of sections of gene-

in - ral shape in deep water [ Sclavounos (1985) .

- x The computational effort involved in the set-
up and solution of the discrete equations

N (3.3), is for all practical purposes compara-
= _! .: +. - V " (i+ im , CG(xi;')d , ble to that required when ct -0. This is due

Ss x. to the existence of recurrence relations
which express higher derivatives of the wave-
source potential in terms of derivatives of

* 1,... ,N (3.3) lower order. The size of the linear system is
unaffected by the addition of (3.1) to the

The integral of the double normal deriva- Green equation.
tive of the singular part of the wave-source
potential needs careful interpretation For Figure 5 presents the heave hydrodynamnic
isj, it is equal to the normal velocity on the coefficients of the circle and the rectangle
panel due to a distribution of dipoles of con- near the first irregular frequency of equation
stant strength on its surface. This value is (2.3). Predictions for - -0, 0.02 and 0.2 are
known to exist at points not lying on its compared to those obtained from the hybrid-
edges. integral solution of Nestegard and Sclavounos

(1984) which is known to be free of irregular-
frequency effects. The corresponding results
for sway are presented in Figure 6 with

analogous conclusions.

.o o. .o. - . . o. . . . . . . . .- . o . .o. .. . . . . . . . .-.. .- -, ,.. . . . . .

° _. • ° •. . • ° . ° ° . ° . . . • ° . - - - , • o ° . • . - - •o o •° . • •



.[oo

C-;

Li -

1.40 1.60 1.60 2.00 2.20 2.40 .50 2.90 3.10 3.40 3.70 4.00
in

'

o14 t.0 t o 20*.2 .0 25 .0 3.0 34 .0 40

lu

Lii

-. 0 1.60 .0 1.90 2.00 2.2 0 0 2.4 .t 3 .0 4.00

-a

ed 1-ear -r

1.20o1.40 o.60 1.e0 .0 0 2.20 2.50 2.60 3.10 3.40 3.70 4.00

Heav an wyadd saddmig ofiinsna h is

(-. ) -0.2; (- ) bybrid-integral solution of Nestegard and

Sclavounos (1984).

o. ". I LJ ° - .

- " . A,,,,*,o1,=m ' ~ m ml~ lknm~nl
- '

e i n i °



mini

aC

- .50 27-.332 LS .5 ' 0 1.0 .0 16.0 20
in 0~

LI IW

Cu-
Cu -

01

.50 2.75 3.00 3.25 3.50 3.75 @.oo 1.20 1.40 1 .60 1.00 2.00

C" a
UU

Q3a

LI I

ru-

Cu

C2.50 2 75 3.00 3.25 3.50 3.70 @1.00 1.20 1.40 1.60 1 .60 2 .00
,( K

Fiue igr

Heae nd wa adedmas ad ampngcoefiiets ea th frs
ireua rqec feuto 3.) bandfo h ouino

equation ~ ~ (33 a a-02euto



Figures 7 and 8 illustrate the performance Euvrard, D., Jami, A., Lenoir, M. and Martin,
of equation (3.3) near the first irregular D. (1981). "Recent Progress Towards an Optimal
frequency of equation (3.1). Results are pre- Coupling of Finite Elements and Singularity
sented for c% - 0, 0.2 and from the solution Distribution Procedures in Numerical Ship
of equation (3.1) alone. The predictions for Hydrodynamics". Proc. 3rd Intl. Conf. Num.

a-0 are accurate over that frequency range, Ship Hydrodyn., Paris.
and are in good agreement with the results
for a =0.2. The larger discrepancies occur Euvrard, D. (1983). "Sur Quelques Methodes de
in the heave damping coefficients, but these Resolution Des Problemes Linesires en Domains
are probably due to its small values. The non Borne". ENSTA publication.
predictions from equation (3.1) display the
ezcpected error near its first irregular fre- Hess, J. L. and Smith, A. N. 0. (1966).
quency. Evident is also a non-negligible er- "Calculation of Potential Flows Around
ror over a wider frequency range, mainly in Arbitrary Bodies". Prog. Aero. Sciences, Vol.
the away coifficients. This is larger than the 8.
corresponding error associated with equation
(2.3), and is due to the larger condition Kleinman, R. E. (1982). "On the Mathematical
number of equation (3.1). The effect of (3.1) Theory of the Motion of Floating Bodies - An
in the composite equation (3.3) is here re- Update". DTNSRDC Report 82/074.
duced by the selection of a value for~equal to
0.2. Mei, C. C. (1978). "Numerical Methods in
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In all cases tested, half of the boundary Rev. Fluid. Mech., (10), pp. 393-416.

of the sections analysed has been approximated
by 10 straight segments. Away from the irregu- Nestegard, A. and Sclavounos, P. D. (1984). "A
lar frequencies, the agreement between the numerical Solution of Two-Dimensional Deep
coefficients obtained from equation (3.3) for Water Wave-Body Problems". J. Ship Res., Vol.

a -0.2 and the numerical scheme of Nestegard 28, No. 1, pp. 48-54.
and Sclavounos is very good. Work is currently
in progress for the extention of the present Newman, J. N. (1985a). "Algorithms for the
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